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Axiomatic quantum theory and resonances 
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Abstract. The mathematical models of resonances in  quantum mechanics are examined 
and it is shown that the subject is full of unresolved difficulties of the most fundamental 
kind. The results in the theory are often proved by methods which not only lack elegance 
but also rigour and lead to ill-defined (non-unique) definitions and solutions. It remains a 
difficult task to establish contact between the rigorous quantum theory built on sound 
foundations by Birkhoff and von Neumann and others and the models usually used to 
describe resonances. A theorem is proved which gives a set of necessary and sufficient 
conditions for the existence of solutions of formal perturbation and kindred equations in 
atomic physics and establishes certain uniqueness properties of solutions which exist. In 
another theorem it  is proved that whenever a state vector belonging to a point eigenvalue 
of the Hamiltonian is perturbed, one has the phenomenon of spectral concentration and i t  
is possible that in cases where the resulting spectral concentration does not constitute a 
point eigenvalue of the perturbed Hamiltonian, one has the phenomenon which probably 
corresponds to a resonance. It  is shown that in the autoionising 2s2p 1.3P states of helium, 
a solution of the formal perturbation equations exists in the underlying Hilbert space on!y 
in the zero order, though a formal solution which is outside the underlying Hilbert space 
exists and belongs to the space of distributions on a subset of the Hilber: space. It  is also 
shown that in cases where a complex eigenvalue is obtained by interfering with a self- 
adjoint operator, the phenomenon is not related to deficiency indices. The mathematical 
background of the work of Sharma and Bowtell has been examined and some progress has 
been made towards finding the rigorous mathematical framework in which the theory 
should find a proper formulation. 

1. Introduction 

Quantum theory as universally practised by physicists uses a mathematical model 
based on a complex and separable Hilbert space which is a sophisticated mathematical 
object and is difficult to comprehend purely intuitively. The mathematical foun- 
dations of the Hilbert space formalism of quantum theory were laid down by Birkhoff 
and von Neumann (1936) and considerable further work on the subject has been done 
by Gleason (1957), Mackey (1963) and Varadarajan (1968). A recent account by 
Sharma (1972) brings out the physical assumptions from which such a quantum theory 
can be deduced. 

An alternative foundation for quantum theory in Hilbert space is provided by the 
work of Segal (1947) which leads to a more general theory based on C*-algebras now 
much used in the quantum theory of fields. Both axiomatic theories agree that an 
observable in quantum mechanics corresponds to a self-adjoint (or essentially self- 
adjoint) operator on a complex and separable Hilbert space. 
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In quantum theory the requirement that the operator which describes an observ- 
able is a self-adjoint one is a very fundamental one which cannot be easily abandoned 
or even relaxed. On the other hand i t  is quite usual to exploit complex analysis in 
hydrodynamics and electrodynamics in the study of phenomena which are essentially 
real. In hydrodynamics, for example, it so happens that the velocity potential and the 
stream function are mutually related in the same way as are the real and imaginary 
parts of an analytic complex-valued function, consequently the two can be con- 
veniently combined together to form a complex potential. Thus the reason why one 
can exploit complex analysis in hydrodynamics is quite transparent. The situation in 
classical electrodynamics also is quite similar. Unless something equally fortuitous 
enables us to use non-self-adjoint operators and the basis of the use of such operators 
is not in contradiction with the considerations which provide the foundations of 
quantum theory, the use of non-self-adjoint operators for the study of the measure- 
ment of values of observables of a quantum system must remain suspect. 

It is a matter of the greatest satisfaction to quantum theorists that properties of 
bound states of isolated quantum systems and particularly of atoms, at any rate in the 
non-relativistic case, can be calculated with remarkable precision by methods which 
conform with the requirements of axiomatic quantum theory with the greatest rigour. 
In fact the ability to predict the energy levels of the low-lying bound states of helium 
with considerable accuracy has always been regarded as among the finest achieve- 
ments of quantum theory. Isolated quantum sysystems are often found in  states which 
are quasi-stationary in the sense that these states decay, perhaps in accordance with 
the exponential law, into fragments; in isolated atoms this phenomenon is illustrated 
by the so called autoionising states. Such states are considered to be responsible also 
for certain peaks of the cross sections in some scattering experiments and are often 
described as resonances. The literature on the quantum theory of resonances is rich in 
volume; perhaps more has been written on this particular topic than any other in 
quantum theory. Unfortunately, however, no one so far has succeeded in proposing a 
mathematical model of resonance which is even approximately consistent with the 
foundations of axiomatic quantum theory. It is our main purpose in this work to look 
into the present status of various theories of resonances from the point of view of 
axiomatic quantum theory and to try to discover the difficulties which are obstructing 
the construction of a satisfactory model. 

Before we look into individual models, it should be pointed out that the subject is 
bedevilled by the belief that these quasi-stationary states or resonances decay accord- 
ing to the exponential law. As mathematicians, we are, of course, uriable to evaluate 
the experimental evidence in support of this belief. However, i t  is possible to assert 
quite categorically that the exponential law of decay is older than quantum theory and 
has been used by chemists for the study of rates of reactions in which compounds 
undergo spontaneous decomposition-the so called monomolecular reactions. Since 
under the conditions of reaction the substance decomposes, in the simplest model i t  is 
natural to assume that every molecule has a constant probability, say k, of being 
decomposed i n  a given interval of, say unit ,  time. Thus if there are N molecules, 
where N is large, in unit  interval of time probably kN of them will actually decompose 
and the rate of decomposition of the substance can be described by 

dN/dt = -kN 
or 

In(N/No) = - k ( t  - t o )  
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or 

N = No exp[-k(t - to)] 

where No is the number of molecules at some initial time to. This is the original 
exponential law of decay. It assumes nothing about the internal structure of the 
molecule except that it has a well defined and constant probability of being decom- 
posed in unit time. This probabilistic law is realised as a concrete observable law 
because of the very large number of molecules present. The  exponential law of decay 
in chemistry is thus the property of a large collection of molecules rather than that of 
individual ones. The result is one in statistical mechanics rather than in particle 
mechanics. A n  individual molecule at  any particular time is either undecomposed or 
decomposed, it does not undergo exponential decay. 

In quantum theory exponential decay has come to mean such a decay of an 
individual system, or more precisely, that the probability that such a system is 
undecomposed decreases exponentially to zero with time. The  bound states are 
stationary because the time evolution of the system in such a state changes only the 
phase of its wavefunction, which, of course, does not change the probability dis- 
tributions associated with the system. If the system has a complex energy, say E - iy, 
with E and y real and with y>O, then substitution in the formal Schrodinger 
time-dependent equation 

d* 
d t  

i -= H$ = (E- iy )$  

or 

b(t) = e-lH'G(to) = e-yr e-'Er * ( t o )  

gives an exponentially decaying factor to the wavefunction. The proposition that the 
decaying states corresponds to such complex eigenvalues of the Hamiltonian is indeed 
very attractive. This remarkable theory is originally due to Gamow (1928) and is 
nearly as old as the quantum theory itself. Gamow, however, was working purely 
formally and the requirement that a quantum Hamiltonian of an isolated system is a 
self-adjoint operator on a complex arid separable Hilbert space did not particularly 
bother him. Self-adjoint operators cannot have complex eigenvalues. The  theory, 
therefore, needs careful reformulation. This has been tried by a large variety of 
authors with, in our  opinion, little real success. 

2. The complex eigenvalue theory 

Probably as a consequence of interaction with mathematical logic, the necessity of 
having absolutely precise definitions is very well appreciated in the framework in 
which mathematicians work and the rules of the game are rigid!y established by the 
axioms and the definitions. Any proposition in accord with the axioms and the 
definitions is true while any proposition which contradicts them is false. In mathema- 
tical physics, however, there is a long tradition of using mathematics of the intuitive 
kind; this has its advantages particularly as a great deal of what is studied in mathe- 
matical physics is exploratory and heuristic. Nevertheless one  would ultimately like to 
have a rigorous mathematical model and a little lack of precision in rigorous mathe- 
matics can cause a lot of obfuscation. Nonetheless the lack of precision is colossal 
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when it comes to the description of the theory of complex eigenvalues. The language 
is often more akin to that of oriental mystics rather than of a precise and exact science. 
In this particular branch of quantum theory unsubstantiated conjectures, in the course 
of time, turn into 'established truths'. We have collected some examples. 

Landau and Lifshitz (1958) say: 'In discussing the quasi-stationary states, we can 
use the following somewhat unusual method. Until now we have always considered 
solutions of Schrodinger's equation with a boundary condition requiring the finiteness 
of the wavefunction at infinity. Instead of this. we shall now look for solutions which 
represent an outgoing spherical wave at infinity: this corresponds to the particle finally 
leaving the system when it disintegrates. Since such a boundary condition is complex, 
we cannot assert that the eigenvalues of energy must be real.' 

It would be interesting to construct a precise mathematical definition of a complex 
boundary condition. It is possible, even likely, that when the Schrodinger Hamiltonian 
is viewed as a differential operator on the vector space of complex-valued C" 
functions on R" (n depending on the particular problem) which is not a Hilbert space, 
it has complex eigenvalues. The eigenfunction belonging to a complex eigenvalue 
cannot be one of the generalised eigenfunctions: these do not necessarily belong to the 
Hilbert space of square integrable functions but can always be regarded as dis- 
tributions on such a Hilbert space. Another fundamental difficulty in the approach 
used by Landau and Lifshitz (1958) (as a matter of historical fact this approach is 
originally due to Breit and Wigner (1936), but see also Weisskopf and Wigner (1930) 
and Garnow (1928)) concerns the normalisation of a n  exponentially decaying wave- 
function. Though Landau and Lifshitz (1958) resolve this difficulty up to a point, their 
approach does not seem to make much sense when looked at from the axiomatic point 
of view. 

We next look at an account of the theory given in a well known text by Newton 
(1966). Newton starts with a Hamiltonian H of the form 

He then defines an operator K by 

He then assumes that K is compact, but does not put any restrictions on the value of 
the parameter E for which this assumption could be correct. He then takes an 
eigenvector @(E) of K belonging to the eigenvalue a ( E )  and differentiates 

(@(E), [(E -- H0)a (E ) - H']@(E)) = 0 (N.1) 
to get 

1 d a  1 
CY dE-(@(E) ,  (Ho-E)@(E)) '  

Equation (N. 1) can be rearranged to yield 

1 
(@(E) ,  (Ho - - E P ( E ) )  =-(@(E),  H '@(E))  

CY 

from which it follows that (@(E),  (Ho-E)@(E) )  is positive definite if either cy is 
positive and H' is positive definite or cy is negative and H '  is negative definite. 
However, according to Newton (1966) (@(E),  (Ho -,!?)@(E)) is always positive 
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definite. Predicated on this extraordinary conclusion there follows a most graphic, 
picturesque and interesting description of what happens to the eigenvalue of K as E 
moves along the real axis: however, we find it  difficult to discern a deductive thread 
connecting the various parts. The reader should study for himself this most interesting 
account of the complex eigenvalue theory on pages 236 and 237 of the work by 
Newton (1966). 

We next consider an ingenious theory of resonances as enunciated by Howland 
(1972). Howland considers an operator of the form 

H ( K )  = T + KB*A 

where T is a self-adjoint operator on a separable Hilbert space % and A and B are 
closed densely defined operators from 2 to another separable Hilbert space R'. We 
use gT, $BA and g B  to denote the domains of T, A and B respectively. It is assunied 
that 

and 
a- c gA n gB 

( A x ,  B y )  = (Bx ,  A Y )  

G ( z ) = ( T - z ) - '  Z € C  

V x , y E 9 A n 9 B  

and K is a perturbation parameter. Let 

be the resolvent of T. Howland (1972) assumes that for any z € p ( T )  where p ( T )  is 
the resolvent set of T, the operator 

AG(z)B* 

which is defined on adB- has a bounded extension Q ( z )  to %" and that I + Q(z) is 
invertible for some z € p ( T ) .  Under these conditions T + KB*A has a self-adjoint 
extension H ( K )  for sufficiently small K with the resolvent 

R (2, K )  = G(z)  - K [ B G ( i ) ] * [  I + KQ(z ) ] - 'AG(z )  

where z ~ p ( T )  and Z + K Q ( Z )  has a bounded inverse. An eigenvalue A. of T of 
multiplicity m will, of course, be a pole of Q ( z )  of rank m. Howland (1972) then 
considers a neighbourhood fl of A. and defines subregions Ci* by 

0' = { z  E 0: *In z > O }  

Howland (1972) then assumes that Q(z)  has continuations Q*(z)  from 0* to fl which 
is analytic on fl except for the single pole at Ao.  This, of course, makes sense only 
when Rf lR  is contained in the spectrum of T so that A. is embedded in the 
continuum. Howland then shows that under these assumptions AH (2, K)B* also has a 
bounded extension Q l ( z ,  K )  provided Iz - A o (  < a l  and I K i < S 2  where 6' and S 2  are 
sufficiently small. He then considers the completely meromorphic continuations 
Q: ( z ,  K )  of Q,(z, k) from i2* to ( z  - A o /  < 61. Howland then defines the poles of these 
continuations Qf(z,  K )  to be the resonances of the perturbation problem, He then 
proves two theorems, the first of which concerns Puiseux series expansions of the 
resonances and the  second gives a formula for the imaginary part of a resonance 
(provided certain further assumptions are valid) and thls formula can be recognised as 
Fermi's golden rule. Howland finally proves that under certain additional constraints 
which ensure that the poles of Q : ( z ,  K )  are the complex conjugates of those of 
Q ; ( z ,  K ) ,  there is spectral concentration of H ( K )  in the neighbourhood of A o .  
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We  now wish to draw attention to the following: 
(1) Howland's work is predicated on the assumption that certain operator-valued 

functions have analytic continuations but he does not tell us the precise conditions 
under which such continuations exist. 

(2) The  definition of resonances requires the decomposition of the Hamiltonian in 
a particular way in which the perturbation can be written as a product of two operators 
with certain very rigid restrictions on their nature. 

( 3 )  Howland's poles, contrary to what Newton (1966) says, correspond to real 
values of the perturbation parameter. 

(4) Contrary to Titchmarsh's (19.58) result that the imaginary part of the point 
where the pole is located is smaller than any positive power of the perturbation 
parameter, Howland finds that Fermi's golden rule is valid and the lowest term of the 
imaginary part is proportional to the square of the perturbation parameter. 

(5) In the only example he considers, Howland finds: "The Gold from which the 
Rul, is made is apparently mixed with Brass.' He  has to make an arbitrary alteration 
in the rule to get a sensible answer. 

(6) N o  attempt has been made to reconcile Howland's definition of a resonance 
with axiomatic quantum theory. 

In order to prove that resonances correspond to spectral concentration Howland 
(1972) has to make assumptions regarding a certain symmetry between poles of 
Q;(z, K ) .  According to folk-lore these poles are at complex eigenvalues of the adjoint 
of a densely defined symmetric operator or, in other words, the complex eigenvalues 
originate due to the Hamiltonian being a symmetric operator with non-zero deficiency 
indices. Hamiltonians in quantum theory and particularly in atomic physics are either 
self-adjoint or essentially self-adjoint and in either case the deficiency indices have to 
be zero. It is easy to prove that the complex poles in the theory of resonances cannot 
even correspond to complex eigenvalues of the adjoint of any symmetric restriction of 
the Hamiltonian. There is a well known theorem in functional analysis (see, for 
example, Naimark 1968) according to which if the adjoint of a densely defined 
symmetric operator has a complex eigenvalue in the upper (or lower) half of the 
complex plane then every complex number in the upper (or Icwer) half plane is also an 
eigenvalue of the adjoint operator. We  cannot, therefore, get a unique complex 
eigenvalue by taking a densely defined symmetric restriction of the Hamiltonian and 
then taking its adjoint and this is what would be necessary to establish some relation 
between resonance poles and such complex eigenvalues. 

We next consider the definition of resonance given by Simon (1973). This is based 
on certain analytic continuations defined by Balslev and Combes (1971). Balslev and 
Combes (1971) define a group U ( 0 )  of dilatations on L Z ( R 3 " )  by 

V f c  L 2 ( R 3 " )  and VB E R. 

Assuming that L2(R3") is a concrete realisation of the Hilbert space corresponding to a 
physical system and H is a Hamiltonian with a decomposition 

where V satisfies certain compactness criteria (the details of which we omit here 
because such details involve technicalities which are of little relevance to our present 
considerations) and Ho is an essentially self-adjoint operator corresponding to the 
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kinetic energy. Balslev and CGmbes (1971) then use the dilatation group to define an 
operator 

H ( 8 )  = u(e)Hu(e)-’  = e-2eHo+ v(e) 

v(e)= u(e)vu(e)-’. 
where 

They then assume that H ( 8 )  has an analytic continuation to complex values of 8 in the 
strip (8: /Im 131 < a }  for some positive real a. One of the most remarkable features in 
the work of Simon (1973) is that the basic assumption about the existence of the 
analytic continuation of H ( 8 )  in the work of Balslev and Combes (1971) is throughout 
referred to as a well established fact. 

Balslev and Combes (1971) have studied the spectral properties of H ( 8 )  and they 
claim to have proved that isolated real eigenvalues of H are also eigenvalues of H ( 8 )  
but the continuous spectra of H ( 8 )  are, in general, a set of lines in the complex plane. 
H ( 8 )  has also isolated eigenvalues in the complex plane: these Simon (1973) defines 
to be resonances. However, some quotations from his work would demonstrate the 
strange methodology being used by him. In 0 3 of his paper he makes the remark: 
“This theorem remaining true i f  ‘resonance’ is replaced with ‘resonance or embedded 
eigenvalue’ in both places where ‘resonance’ appears. The interesting phenomenon is 
that embedded eigenvalue can become resonances. This is the situation we discuss 
more fully in $9: 4,5.” Simon does not give any justification for the assertion in his 
remark, but in the later section he asserts: ‘In the last section we showed that an 
eigenvalue embedded in the continuum can turn into a resonance when a suitable 
perturbation is turned on.’ Thus an assertion made in $ 3 becomes with the greatest 
ease a demonstration in $ 4 .  Simon in $ 4  makes the rather eloquent but absurd 
remark: ‘It has been clear for many years that the Fermi Golden Rule is the right 
answer; what has been unclear is the right question.’ 

Simon (1973) goes on to show that in a case where the operator Ho+ V is 
perturbed by a third operator W, the imaginary part of the second-order term in a 
power series expansion of the complex energy E ( @ )  in powers of @ is given by 

Im a 2  = rr(df/dE)/E=Eo 

where 

f = ( W O ,  P I E o - E , E [  WrLo) 

and P ,  is the spectral projection for Ho+ V with the projection on to the eigen- 
function $0 of Ho + V belonging to the eigenfunction Eo embedded in the continuum 
removed. 

The calculation yielding the result is obtained by enclosing the pole corresponding 
to the resonance in a closed contour which does not intersect the spectrum of 
Ho + V + p  W. Unfortunately [ z  - (Ho + V + p W)]-’ does not have a pole cor- 
responding to the resonance for any real value of p and the calculation is valid only for 
poles of ( z  -H(8))-’ with 8 complex. Simon (1973) also finds spectral concentration 
associated with resonances. He does not seem to prove that his conclusions continue 
to be valid even when the imaginary part of 8 is allowed to go to zero. 

We wish to make a number of remarks on the work of Simon (1973). First Simon 
finds that resonances are properties of a pair (H, Ho) and are not intrinsic properties of 
the Hamiltonian H and there seems, except in certain two-body problems, no unique 
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way of choosing Ho. Thus Simon's resonances are ill defined. Second, the mathema- 
tical device by which complex poles and eigenvalues are obtained is so invidious that it 
does not give any clear idea of what, if anything, the non-self-adjoint Hamiltonian 
represents in terms of the propositional calculus of quantum mechanics (Birkhoff and 
von Neumann 1936, Mackey 1963). Third, Simon by heuristic calculations finds that 
the exponential law can only be approximate and yet he thinks that Fermi's golden 
rule is the right answer. Fourth, no attempt has been made to reconcile his definitions 
and results with axiomatic quantum theory. 

It is sometimes said that only self-contained physical systems have self-adjoint 
Hamiltonians (see, for example, Wong 1967). In principle the entire universe is the 
only self-contained physical system, but in practice many physical systems can be well 
approximated as completely isolated. It is argued (Nakayama and DeWitt 1964) that 
for the description of quantum mechanical systems which are intimately coupled to 
their environments, the energy is not a constant of motion and for such non-conser- 
vative systems it  is legitimate to use non-self-adjoint operators as models for their 
Hamiltonians. Unfortunately, in all the examples of actual uses of non-self-adjoint 
Hamiltonians, the absence of self-adjointness arises neither from the necessity nor 
from a prescription of taking into account the interaction with the environment; in 
each case, self-adjointness is abandoned only because it is mathematically convenient 
so to do, that is, from pure mathematical opportunism. The suggestion, therefore, 
though worthy of further consideration is at the present time of no value in providing a 
justification for the actual use of non-self-adjoint operators as models for the Hamil- 
tonians of quantum systems. 

3. Spectral concentration 

Spectral concentration would be easier to describe i f  one were an experimentalist. If 
the emission spectrum of an atom (or a molecule) is viewed through a spectroscope, in 
the continuous spectrum are seen bands which are brighter than neighbouring parts of 
the continuum on either side and even in the discrete part of the spectrum are 
sometimes seen broad bands rather than sharp lines. These bright bands (dark in the 
case of the absorption spectrum) correspond to the phenomenon of spectral concen- 
tration. If the quantum mechanical model provides a good description of the atomic 
phenomenon described above, then the corresponding structure in the mathematical 
model is described as a spectral concentration in the mathematical sense. The sharp 
lines in the experimental spectrum of an atom correspond to discrete points in the 
mathematical spectrum of the operator corresponding to the Hamiltonian and the 
continuous part of the experimental spectrum corresponds to the continuous part of 
the mathematical spectrum of the Hamiltonian. In the experimental situation a 
spectral concentration is something intermediate between discrete and continuous 
spectra. At first sight, it might seem that bands in the spectrum should correspond to 
intervals of the real line with particular properties in the mathematical spectrum of the 
Hamiltonian, but the situation is rendered extremely difficult by the fact that if an 
interval is contained in the spectrum then it must be part of the continuous spectrum. 
It is necessary, therefore, to construct a model which is a little more complicated than 
one based on simple intervals in the spectrum with particular properties. Before 
proceeding any further it  should be observed that the ima.ge of a spectral measure 
corresponding to any interval, however small, of the continuous spectrum is an 
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infinite-dimensional subspace af the underlying Hilbert space and furthermore given 
any E > 0 and an interval ]A - E ,  A + E [  of the real line contained in the continuous 
spectrum of a self-adjoint operator H, there are infinitely many linearly independent 
vectors U which satisfy 

llW - A  hll EIIUII (1) 

and thus given any positive real number E ,  however small, there are infinitely many 
approximate eigenvectors of H such that closeness of the approximation is less than E 

in the norm. This is precisely what makes the study of continuous spectra rather 
uncomfortable, particularly so if one is inclined to use approximate methods. With 
these remarks in mind we now proceed to define concepts which lead to the definition 
of a spectral concentration. The approach here is based on the work of Conley and 
Rejto (1966). 

Let 

H, = Ho + EH1 (2 1 
be a family of self-adjoint (or essentially self-adjoint) operators depending on a real 
parameter E.  The domains gHe of the operators depend on E ,  but it is assumed that 
there is a dense linear set gH such that 

9 H  B H =  (3) 
for sufficiently small E .  

Following Rellich (1936) we define 

H, f H~ 

H d  -+ Ho4 

if for C#J E 

as E + 0. 

Note that if all the operators are bounded then this reduces to the usual definition of 
strong convergence. With this definition Rellich (1936) proves the following theorem. 

Theorem 3.1 (Rellich 1936). Let HE 4 Ha in the above sense and let P, and Po be the 
spectral measures corresponding to H, and Ho respectively. Let A be an interval of 
the reals whose end points are not in the point spectrum of Ha. Then 

P,(A)  1 Po(h). (4 ) 

Let A. be an isolated point eigenvalue of Ho: the eigenspace of Ho belonging to A "  
will be denoted by XA0. Conley and Rejto (1966) then define a spectral concentration 
at A. for the family H, as follows. 

Definition. The spectrum of He is concentrated to order p at A. as E -+ 0 if there is a 
family of Bore1 sets A, whose Lebesgue measures .(A.) satisfy 

.(AE) = O(EP) (5  1 
and such that 

PAL)$ p o ( o 0 ) )  as E +. 0. (6) 

Next Conley and Rejto (1966) define an asymptotic eigenvector family as follows. 
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Definition. An asymptotic eigenvector family of order p at A. is a family 4, of unit 
vectors satisfying the following conditions: 

(i) there is an open interval A containing A. and a family A, of real numbers such 
that 

lIP,(A)(H, -AS)4,\\ = O(E*)  asE+0;  (7 1 

(1 - Po(IA 0 } ) ) 4 ~  + 0 ase-,O. (8) 

and (ii) 

From our earlier remark about the continuous spectrum it  follows that whenever 
H, has a continuous spectrum in a neighbourhood of A. condition (i) is always satisfied 
and furthermore even when the operators HE have eigenvalues A, approaching A. 
continuously as E + O ,  then also condition (i) is satisfied. It is the requirement in 
condition (ii) which is what characterises an asymptotic eigenvector family and hence, 
in view of the lemma in the next paragraph, a spectral concentration. It should be 
noted that when H, has eigenvalues approaching A. continuously as E + 0 condition 
(ii) is also satisfied, so that point eigenvalues of a family of perturbed operators are 
trivial examples of spectral concentration. 

Lemma (Conley and Rejto 1966). Let RA0 have dimension n and let there be n 
asymptotic eigenvector families 4[  ( j  = 1, . . . , n )  of order at least p at satisfying 

1 
n -=a<- whenever j # k .  (9 )  ll(4L 4911- 

Then the spectrum of H, is concentrated to order p at Ao .  

totic eigenvector family guarantees the existence of a spectral concentration. 

bation equations exist up to order, say n, then by taking 

In particular when A. is a non-degenerate eigenvector, the existence of an asymp- 

With these results available as tools, in cases where formal solutions of pertur- 

and 

n .  
A, = 1 Aiel 

i=O 

it is easy to prove that 

llU - PO({AO))4 .  II + 0 

Ilf', ( A W ,  - A, Mf I/ + O(E 1, 

(12) 

(13) 

and 

where A is any open interval containing A. but not containing other points in the 
spectrum of Ho. Thus whenever formal solutions to the perturbation equations exist 
to order n, so does spectral concentration to the same order. We wish to point out that 
if solutions to the formal perturbation equations exist up to the nth order, we use 
solutions only up to (n - 1)st order to define 8,. Conley and Rejto (1966) state a 
somewhat stronger result, for they seem to require the existence of the solutions only 
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up to (n  - 1)st order to guarantee spectral concentration up to order n. However, 
their proof depends on certain properties of and in cases where the formal 
perturbation equation for & does not have a solution may not belong to the 
domain gH,  of Ht  and then Ht&-l, of course, has no meaning. This difficulty would 
not arise if condition (3) were satisfied and this partly explains the necessity of having 
this requirement. 

The work of Conley and Rejto (1966) defines spectral concentration in the case 
where an isolated eigenvalue of a self-adjoint operator disappears as a result of a 
self-adjoint perturbation and a neighbourhood of the isolated eigenvalue becomes 
part of the continuous spectrum of the perturbed operator. The work also shows how 
spectral concentration in such cases is related to asymptotic eigenvector families. 

In  the case where an eigenvalue of the unperturbed operator is embedded in the 
continuum and dissolves in the continuum as a result of the perturbation, the situation 
is a little more complicated. However, there seems absolutely no reason why the same 
definition of spectral concentration cannot be used. It seems that in limiting their 
definition of spectral concentration to the case of isolated eigenvalues only Conley and 
Rejto (1966) were being unduly cautious. Indeed Howland (1972) has studied the 
relation between spectral concentration and formal solutions of perturbation equa- 
tions even in cases where an eigenvalue of the unperturbed operator is embedded in 
the continuum and using the same definition of spectral concentration does not seem 
to present any difficulty whatsoever. In  this work we prove that in the simplest 
example of physical interest of an embedded eigenvalue dissolving into the continuum 
as a result of a perturbation (such an example is provided by an autoionising state of 
helium), even the first-order perturbation equation does not have a solution. To do 
this we first prove a theorem giving necessary and sufficient condition for the existence 
of solutions of an equation of the type 

( A  - A M  = * (14) 

where A is a self-adjoint operator on a Hilbert space X with domain GBA, q5 E BA, 
(I/ E X and A E A ( A )  (= the spectrum of A ) .  To do this we first form the Sobolev triplet 
(Gelfand and Shilov 1967): 

@ =  9 A  c Xc 0' (15) 
where CP' is the dual of CP. For our result we need the following theorem (see, Gelfand 
and Shilov 1967). 

Theorem 3.2. A symmetric linear operator A ,  defined on the space CP which admits a 
self-adjoint extension to the Hilbert space X, has a complete set of eigendistributions 
belonging to the dual space 0'. 

We can now assert our main theorems as follows. 

Theorem 3.3. Let A E A,(A) (=the point spectrum of A )  be an isolated point in the 
spectrum of A .  Then a necessary and sufficient condition that equation (14) has a 
solution in X is that P,({h})CI/ = 0, where PA is the spectral measure induced by A. If a 
solution 4 exists, then ( I  -PA({A}) )+  is unique. 

Theorem 3.4. Let A E &(A) (=the continuous spectrum of A).  Then a necessary 
condition that equation (14) has a solution in 2 is that xA((slr)=O where ,yA is the 
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eigendistribution belonging to the generalised eigenvalue A .  A sufficient condition 
that equation (14) has a solution in X is that for some real E > 0 PA(]A - E ,  A + E [ ) +  = 
0. Furthermore, if a solution exists, it is unique. 

Proof of theorem 3.3. Necessity: Suppose a solution 4 exists in X. Let 77 E 

(PA({A INX), that is 

(A-A)77=0. (16) 

(77,(A-A)4)=(77,4) (17) 

(77, (A - A M )  = ( (A  - A h ,  4) = 0. (18) 

PA({A ))4 = 0. (19) 

( ] A  - E ,  A +E[)n A(A)={A} (20a)  

We form the inner-product of equation (14) with 77:  

but since A is self-adjoint 

Thus 4 is orthogonal to every vector in the range of PA((A)) ,  hence 

Sufficiency: Since A is isolated, it is possible to find an E > 0 such that 

The restriction of A to Q ( X )  is the same as AQ restricted to the same subspace. By 
projecting equation (14) to Q(%) we have, since A and Q commute 

(A - A ) @  = Q$ = (I - P)$ = 4 ( 2 2 )  

(AQ-A)Qd=*,. ( 2 3 )  

or 

The restriction of AQ to Q(X) is a self-adjoint operator on Q ( X )  and its spectrum is 

A(AQ)=A(A)\]A - E ,  A + E [ ,  

hence A & A(AQ) and then (AQ -A)-' ,  by the resolvent theorem (see Reisz and Nagy 
1965), is a bounded operator on a(%) yielding 

~4 = (AQ -A)-'+. (24) 

By setting q5 = (24, we see that q!~ is a solution of equation (14). 

Uniqueness: Suppose that contrary to the assertion, there are two solutions 4 and 4' 
such that Q4 # Qd'. Since QII, = 4, it follows that Qq5 and Q4' are also solutions of 
equation (14). This implies that Q(4 - 4 ' )  is a solution of 

(A-A)q = O .  ( 2 5 )  

But every solution of equation ( 2 5 )  belonging to X is an eigenvector of A belonging to 
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the eigenvalue A and hence belongs to the range of PA({A}) .  For every such vector 7 

Qq = ( I  -P)v = 7 - = 0 (26 )  

contradicting Q4 # Q4'. This completes the proof of theorem 3.3. 

Proof of Theorem 3.4. Necessity: Note first that a solution in X, if it exists, must 
necessarily belong to a. 

Suppose a solution exists. Let xA be the eigendistribution belonging to the 
generalised eigenvalue A .  Then evaluating xA at both sides of equation (14)  gives us 

X A  (+) = X A  ( (A  - A  14) = X A  ((A - A  M ) = X ~  (O)= 0. 

Sufficiency: The proof is the same as in the case of theorem 3.3 .  

Uniqueness: Suppose two solutions 4 and 4' exist, then 4 - 4' satisfies 

(A -A)(c$ - 4 ' )  = 0 

which implies that either 4 = 4' or A belongs to the point spectrum of A. The latter 
possibility is ruled out by our hypothesis. This completes our proof. 

In view of the work done in proving the above theorem, we can assert the 
following theorem. 

Theorem 3.5. Let A &  A(A). Then equation (14)  always has a unique solution in X. 

We would like to point out that a number of earlier results of Rejto (1968) and 
Sharma and Bowtell (1975) follow as immediate corollaries to these remarkably 
simple theorems. 

4. Autoionisation in helium 

Let XH be the Hilbert space corresponding to the motion of the electron in the 
hydrogen atom relative to the centre of mass. The pure states describing the motion 
of the two electrons in helium relative to the centre of mass correspond to those 
elements of ZH 0 ZH which satisfy certain symmetry requirements: such state vectors 
are either symmetric or antisymmetric with respect to the interchange of the order in 
pairs in RH 0 XH whose linear combinations they are; the symmetric states are called 
singlets and the antisymmetric ones the triplets. 

Let H be the quantum Hamiltonian for the motion of the electrons in helium. It 
can be written as 

H = h 0 I + I  0 h +H12=HO+H12 (27)  
where h is the hydrogen Hamiltonian, I the identity operator on XH and H I 2  
represents the interrelectronic interactions. The spectrum A ( h )  of h is completely 
known: it has point eigenvalues at (in natural atomic units) 

-1 /2n2  n EZ+ 
and the whole of the positive real axis constitutes its continuous spectrum. Thus 

A ( h ) = { - 1 / 2 n 2 : n  EZ+)U{R+}U{O} (28)  
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and the spectrum A(Ho) of Ho can now be easily seen to be 

A(Ho) = {A = v + p : n, p E A ( h ) } .  (29) 

When both v and p are point eigenvalues, then so is A ; but if either v or p or both 
belong to the continuous spectrum of h, then A also belongs to the continuous 
spectrum of Ho. Consequently Ho has a purely point spectrum in the interval 
[-1, - 4 [ with eigenvalues A, given by 

The positive real axis constitutes the purely continuous spectrum of Ho whereas there 
is a superimposition of point and continuous spectra of Ho in the interval [- i , O [  or, in 
other words, there are a certain (in fact, denumerably infinite) number of point 
eigenvalues of Ho embedded in this interval which is part of the continuous spectrum 
of Ho. The values of these embedded eigenvalues are given by 

1 1  
n, m E Z+\{I}. An,m = -- - - 

2n2 2m2 

In the non-relativistic approximation the total angular momentum of the electrons 
is conserved, consequently it is possible to decompose the subspaces of XH 0 XH 
(which constitutes our model for helium) into a direct sum of subspaces of different 
angular momenta. Let 

m 

X * = O  x/ 
1 =o 

be the decomposition of ZH according to angular momenta, then in the corresponding 
decomposition of XH according to total angular momenta, the term corresponding to 
total angular momentum n (n  + 1) has components in 

X, 0 Xm 11 -ml s n s 11 +mi.  

Considering the case of total angular momentum 2 ,  which gives rise to the so called P 
states, the appropriate subspace for these states is 

x H e ( p ) C  ( 2 0  o 2,) o xo)( o (x/ o x m )  o ( x m  o 2,)) (33) 
Ism 

with 1 > 0 and 11- ml G 1, where the direct sums over 1 and m are taken over only 
those values which produce P states of odd parity. (We consider here P states in 
preference to S states which are simpler in that the total angular momentum is zero. 
However, the lowest eigenvalue of the S-family which is embedded in the continuum 
is degenerate whereas the lowest eigenvalue of the P-family which is embedded in the 
continuum is non-degenerate thus making the P state simpler for the study of pertur- 
bations of eigenvalues embedded in the continuum.) Each of the subspaces in the 
direct sum (33) reduces Ho. Each subspace of a particular angular momentum not 
only reduces Ho but also H. The restriction HE of Ho to x H e ( P )  has spectrum 
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The first of the sets in this union is purely discrete, in the interval of the second set are 
embedded infinitely many eigenvalues of H: at points 

-&+$) 1 1  n, m € Z+\{l). ( 3 5 )  

It is generally believed, though it has not been proved rigorously, that when Ho is 
perturbed by H12, the discrete eigenvalues remain discrete but the eigenvalues 
embedded in the continuum are absorbed by the continuum and the ‘ghosts’ they 
leave behind cause resonances. We shall consider the point eigenvalue embedded in 
the continuum at -a ( n  = m = 2) and prove that the formal perturbation expansion 
corresponding to this simple eigenvalue has a Hilbert space solution only in the zero 
order. 

Theorem 4.1. The formal first-order equations for the 2s2p 1*3P states of helium do 
not admit solutions in 9 H o .  

Proof. The first-order equation is 

with 

-a is an eigenvalue of Ho embedded in the continuum and therefore in order that a 
solution exists the necessary conditions in both theorems 3.3 and 3.4 must be satisfied. 
It is easy to verify that the necessary condition in theorem 3.3 is satisfied. The 
necessary condition in theorem 3.4 is 

X1/4((E1 -H12)40)= 0.  (39) 

The left-hand side of equation (39) has been evaluated analytically by Horak and 
Lewis (1976) and the value is non-zero. Hence the formal first-order equation does 
not have a solution in 9Ho. We are finished. 

We shall now show how equation (36) can be suitably projected onto a subspace to 
yield, in the coordinate representation, an ordinary differential equation which 
contains that part of equation (36) which causes all the difficulty. We consider the 
subspace 

( 2 0  0 XI) 0 (XI 0 20). 
In the coordinate representation Xo can be represented by L:([O, C O [ )  which is the 
Hilbert space of those real-valued functions on[O,co[ which are normed by the 
inner-product defined by 

00 

( f ,  g )  = 1 f ( r > g ( r ) r 2  dr. (40) 
0 

Elements of Xl have representations of the form f Y i  where f~ L:([(O, C O [ )  and Y :  is 
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a spherical harmonic. In this representation the restriction h l ~ ,  of h to %'! has the 
realisation 

1 +- 1=0 ,1 .  
1 d2 1 d 1 1(1+1)  hin = L l =  -- --e --- 
2 dr r dr r r2 

If we take goo to be the subspace spanned by the eigenvector belonging to the lowest 
eigenvalue - $ of Lo and consider the direct sum 

(XOO 0 2 1 )  0 ( 2 1  0 2 0 0 )  
then this is that subspace of %'He(p) which in the language of physicists is spanned by 
the so called lsnp and lskp (n is a discrete parameter and k is a continuous 
parameter) states of helium. Let P be the projection on this subspace, then P 
commutes with Ho and in our  particular representation, straightforward calculation 
reduces 

P(H0 +$)*I = P(E1- H!2)*0 (42) 
to 

1 d 2  I d  1 1  1 
( 2 d r 2  r d r  r r 4 + 7 - -) * 1 
- - - - - - - - 

- - e-"r(3r + 2 )  27J3 
64 - 2 r  e (27r4 + 18r3 + 48r2 - 128r - 128)+-(2 - r ) )  (43) * ((243J3)r 243d3 

where the + sign is to be taken for singlets and the - sign for the triplets. Since a 
belongs to the continuous spectrum of L1, theorem 3.4 in the preceding section tells us 
that equation (43) has a Hilbert space solution only if X1/4(f$)=O, where f$ represents 
the right-hand side of equation (43). The work of Sharma and Bowtell (1973) and 
Horak and Lewis (1976) shows that this is non-zero showing that a Hilbert space 
solution does not exist. However, it is possible that a solution in the space 0' (the dual 
of GBL,) exists and both Sharma and Bowtell (1973) and Horak and Lewis (1976) claim 
to have found such a solution. The work above explains in a nutshell the mathematics 
which lies behind the work of these authors who seem to do all their work formally 
without caring much about rigorous justification of their works. The work of Sharma 
and Bowtell (unpublished) provides rather accurate estimates of the so called widths 
calculated according to the formula given by Fermi's golden rule with H I  as in 
equation (27): the values are in poor agreement with experiment. The calculation 
uses the same pair (H ,Ho)  as used by Simon (1973) whose work being purely 
qualitative does not provide any numerical values. 

Experimental results are in better agreement with semi-empirical values obtained 
from Fermi's rule with a different pair (H, Ho), but semi-empirical calculations, to say 
the least, are semi-empirical. 

We now show that whenever a self-adjoint operator is perturbed by another 
self-adjoint operator satisfying condition (3), the family of perturbed operators cor- 
responding to the different values of the perturbation parameter always has a spectral 
concentration at each point eigenvalue of the unperturbed operator. 
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Theorem 4.2. Let Ho be a self-adjoint operator with domain gH0 in a Hilbert space X. 
Let H e  be the family of operators Ho+eH1 where H I  is a self-adjoint operator with 
domain gH1 2 aH0. Then the family HE has a spectral concentration at each eigen- 
value A of Ho. 

Proof. Let q5 be an eigenvector belonging to the eigenvalue A ,  that is 

Hod = Aq5 or (Ho+ - -A)+ = ~H1q5. 

This implies that 

I I (Ho+EHi-h)q5II=EIIHiq5II  

and provided E is small enough q5 is indeed an approximate eigenvector of He = 
Ho+~H1 belonging to the value A. Moreover if P is the projection on the eigenspace 
of Ho belonging to A ,  then 

( I  - P)q5 = 0. 

Thus q5 satisfies the condition of being an asymptotic eigenvector and according to the 
theorem of Conley and Rejto (1966) there is at least a first-order concentration of 
spectrum at A .  This completes the proof of our  theorem. 

Remark. Theorem 4.2 tells us that under a suitable perturbation a point eigenvalue 
always yields a spectral concentration. It is known from the experimental study of 
doubly excited states of helium that the autoionising states are associated with the 
vanishing of point eigenvalues embedded in the continuum under perturbation. Hence 
there is a heuristic link between spectral concentration and autoionisation. 

5. Pure state or mixed state 

From time to time it has been suggested by a variety of authors that a proper theory 
for decaying states is more likely to be found in statistical quantum mechanics rather 
than in the quantum theory of isolated systems. This seems to be the most probable 
area where a good solution of the problem is likely to be found. Slow decay, 
experimental or otherwise, of an isolated system does not seem very meaningful and 
the phenomenon is more easily understandable in terms of ensembles. The foun- 
dations of quantum theory provided by Birkhoff and von Neumann (1936) and others 
(see, for example, Mackey 1963, Varadarajan 1968) incorporates into the theory the 
collective behaviour of an ensemble through the so called mixed states. A mixed state 
in the theory is represented by a positive self-adjoint operator of unit trace and does 
not have a representation by a vector in the underlying Hilbert space. The expected 
value of an observable represented by the operator A in a state represented by the 
operator S is simply Tr(AS) = Tr(SA). If S and A do not commute AS wili not be 
self-adjoint but Tr(AS) is always real. It is possible that S corresponding to a 
decaying state is not very different from P the projection on the eigenspace of Ho 
belonging to the eigenvalue which dissolves into the continuum. It is also possible that 
S corresponding to a decaying state is not uniquely defined and as Sharma and 
SriRankanathan (1977) have pointed out, the lack of precise definition whether in the 
experimental profile or in the theoretical model is in some way the very essence of 
resonances. Exponential decays and Lorentzian lineshapes may very well arise from 
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the overwhelming desire of experimentalists to identify their results somehow with 
something which is acceptable even though such identifications might lack proper 
foundations. The situation as we see it is far from satisfactory and we hope that 
answering some of the objections we have raised will, in due course, shed some light 
on this very difficult problem. 

6. Concluding remarks 

To sum up, we have looked at some of the mathematical models of resonances and 
found that the subject is full of unresolved difficulties of the most fundamental kind. 
The results in the theories are often proved by methods which lack elegance and 
produce non-unique definitions and solutions. I t  remains a difficult task to establish 
contact between the rigorous quantum theory built on sound mathematical foun- 
dations (see, Varadarajan 1968 where further references will be found) and the 
models usually used to describe resonances. We have proved theorems which give the 
necessary and sufficient conditions for the existence of Hilbert space solutions of 
formal perturbation and kindred equations and which establish certain uniqueness 
properties of the solutions which exist. We have proved that whenever a state vector 
belonging to a point eigenvalue is perturbed, we have, with certain mild restrictions on 
the perturbation, the phenomenon of spectral concentration and it is possible that in 
cases where the spectral concentration does not constitute a point eigenvalue of the 
perturbed operator, we have the phenomenon which probably corresponds to a 
resonance. We have shown that the autoionising 2s2p 1,3P states of helium do not 
admit Hilbert space solutions of the formal perturbation equations except in the zero 
order, though a formal solution which does not belong to the underlying Hilbert space 
probably exists and belongs to the dual of the domain of the unperturbed Hamil- 
tonian. We have shown that in cases where a complex eigenvalue is obtained by 
interfering with a self-adjoint operator, the phenomenon is not related to deficiency 
indices. We have looked into the mathematical backgrounds of the work of Sharma 
and Bowtell (1973) on the autoionising states of helium and have made some progress 
towards finding the rigorous mathematical framework in which the theory can have a 
proper mathematical formulation. 
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